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Abstract

This study uses a computational approach to analyze coherence of expression of genes in pathways. Microarray data were analyzed with

respect to coherent gene expression in a group of genes defined as a pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database. Our hypothesis is that genes in the same pathway are more likely to be coordinately regulated than a randomly selected gene set. A

correlation coefficient for each pair of genes in a pathway was estimated based on gene expression in normal or tumor samples, and

statistically significant correlation coefficients were identified. The coherence indicator was defined as the ratio of the number of gene pairs in

the pathway whose correlation coefficients are significant, divided by the total number of gene pairs in the pathway. We defined all genes that

appeared in the KEGG pathways as a reference gene set. Our analysis indicated that the mean coherence indicator of pathways is significantly

larger than the mean coherence indicator of random gene sets drawn from the reference gene set. Thus, the result supports our hypothesis.

The significance of each individual pathway of n genes was evaluated by comparing its coherence indicator with coherence indicators of

1000 random permutation sets of n genes chosen from the reference gene set. We analyzed three data sets: two Affymetrix microarrays and

one cDNA microarray. For each of the three data sets, statistically significant pathways were identified among all KEGG pathways. Seven of

96 pathways had a significant coherence indicator in normal tissue and 14 of 96 pathways had a significant coherence indicator in tumor

tissue in all three data sets. The increase in the number of pathways with significant coherence indicators may reflect the fact that tumor cells

have a higher rate of metabolism than normal cells. Five pathways involved in oxidative phosphorylation, ATP synthesis, protein synthesis,

or RNA synthesis were coherent in both normal and tumor tissue, demonstrating that these are essential genes, a high level of expression of

which is required regardless of cell type.

Published by Elsevier Inc.

The recent completion of the human genome sequence has proven to be a powerful approach for classifying
has been accompanied by increasing interest in high-

throughput genomics-based global expression technologies.

These methods facilitate studies of the cellular transcriptome

or proteome and the networks of interactions between the

genome, the transcriptome, and the proteome. Affymetrix

DNA oligonucleotide microarray and cDNA microarray are

the two major platforms for genome-wide analysis of tran-

scription and gene regulatory networks. These technologies

have the capacity to measure simultaneously transcription of

all of the estimated 30,000 genes in the human genome.

Many experimental studies have successfully employed

microarray technology. For example, microarray analysis
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cancers. Two clinically distinct types of diffuse large B

cell lymphoma were identified by clustering samples based

on their gene expression profiles. This information facili-

tates increased precision of diagnosis, staging, and predic-

tion of cancer prognosis [1]. The clustering methods

developed for microarray data analysis include dendrogram

[2], K-means [3], self-organizing map [4], support vector

machine [5], and neural network [6]. Microarray data have

also been used to demonstrate coordinate regulation over

time of genes involved in the metabolic shift from fer-

mentation to respiration [7] and cell cycle progression in

Saccharomyces cerevisiae [8]. Coregulation of ligand–

receptor gene pairs has also been studied using microarray

technology [9]. Despite the successes in clustering samples

and genes based on microarray gene expression data, the
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existing pathway knowledge has seldom been applied in

these analyses and no single index has been provided to

quantify the expression of genes in each gene set identified

by these approaches. Genes have usually been divided into

nonoverlapping subsets in these approaches, while Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways

and other biological networks often share some common

genes. This study reports a computational approach to

measuring coherence of gene expression for genes in a

pathway. We developed a single index to quantify coordi-

nate regulation of all genes in each pathway. Pearson’s

correlation coefficient was used to assess the correlation in

expression of all gene pairs in a pathway. The coherence

indicator was defined as the ratio of the number of gene

pairs in a pathway whose correlation coefficients are

significant, divided by the total number of gene pairs in

the pathway. Coherence indicators were computed for each

of the 96 KEGG pathways in normal and tumor samples
Fig. 1. Scatter plot of correlation coefficient vs p value for normal or tumor sam

mannose metabolism pathway. Normal samples are shown on the left and tumor s

data are shown on the bottom. The dashed line is the 5% significance level. The ef

fewer in the SMD data set. The solid line shows the two-tailed p value of t statis
using three different data sets, and the significance of the

coherence indicators was assessed.
Results

This study is based on the hypothesis that the expres-

sion of two genes in the same pathway is more likely to

be correlated than that of two genes in different pathways.

This hypothesis predicts that a group of genes in one

pathway is more likely to be coordinately regulated than a

random set of genes. This hypothesis was tested in the

following manner. First, Pearson correlation coefficient

was calculated for all gene pairs in each of the 96

pathways described in the KEGG system, and significantly

correlated gene pairs were identified. Fig. 1 shows the

results for genes in the pathway for fructose and mannose

metabolism. Results are presented as scatter plots of
ples in CNCR and SMD data sets. Gene pairs are from the fructose and

amples are shown on the right. CNCR data are shown on the top and SMD

fective sample size for each gene pair is 18 or fewer in the CNCR and 74 or

tics for sample size of 18 (top) and 74 (bottom).
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correlation coefficient vs p value for normal and tumor

samples in two data sets. The solid line in each graph

shows the two-tailed p values of the t statistics with (m �
2) degrees of freedom when the effective sample size is m.

The t statistic was computed by T = sqrt(m � 2) � R/

sqrt(1 � R2) for a correlation coefficient R (‘‘sqrt’’

designates ‘‘square root’’). Second, a coherence indicator

was defined as the ratio of the number of gene pairs in a

pathway whose correlation coefficient was significant ( p <

0.05), divided by the total number of gene pairs in the

pathway. Third, we defined all genes that appeared in the

KEGG pathways as a reference gene set. For each

pathway, 10 random gene sets of the same size as the

pathway were randomly selected from the reference gene

set. Coherence indicators were computed for the random

gene sets derived from gene expression data of normal and

tumor samples separately. Fourth, distributions of coher-

ence indicators from all pathways were compared between

pathway and random gene sets (Fig. 2). Based on the

normal sample, the coherence indicators of the pathway
Fig. 2. Comparison of coherence indicator distributions. (A) Pathway vs random

threshold of 0.25, the mean coherence indicators (MCIs) for pathways and random

significantly higher than the latter ( p = 1.9 � 10�12). (B) Pathway vs random ge

pathway (0.65) and random gene set (0.64) was observed. (C) Tumor vs normal

normal sample (0.61 with p = 0.02 in t test). (D) Tumor vs normal in random gene s

with p = 0 in t test).
gene set are higher than those of the random gene set (Fig.

2A). The mean coherence indicators are 0.61 and 0.53 for

pathway and random gene set, respectively, which is

highly significant ( p = 1.9 � 10�12, t test). The results

support our hypothesis. Interestingly, there was no signif-

icant difference in the mean coherence indicator between

pathway and random gene set in tumors (Fig. 2B). We

then went on to evaluate the distributions of coherence

indicators for pathways between normal and tumor sam-

ples (Fig. 2C). We found that gene expression in tumor

had a higher mean coherence indicator than the normal

sample ( p = 0.019, t test). The increase in the coherence

of gene expression is not unique to pathway. Coherence in

the random gene set was also increased in the tumor

sample in comparison to the normal sample (Fig. 2D). The

increased coherence indicator in tumor was mostly due to

increased gene expression in tumor (see Discussion).

The statistical significance of an individual coherence

indicator in a pathway was evaluated by comparing the

coherence indicator of the pathway to the coherence
gene set in the normal sample. Considering coherence indicators above a

gene sets are 0.61 and 0.53, respectively. The t test shows that the former is

ne set in the tumor sample. No significant difference between the MCIs of

in pathway. The MCI in the tumor sample (0.65) is higher than that in the

et. The MCI in tumor (0.64) is significantly higher than that in normal (0.53
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indicators of 1000 random gene sets (see Methods). Ran-

dom gene sets were selected from the reference gene set

using a random permutation method, and a coherence

indicator was computed for each random gene set. The

significance of the coherence indicator for a pathway was

evaluated against the background of the coherence indica-

tors of the random gene sets. A pathway was considered to

be coherent if its p value was less than 0.05. Although the

relation between coherence indicator and p value was

unknown, higher coherence indicators tended to have

smaller p values (Fig. 3).

The pathways with significant coherence indicators are

summarized in Table 1. At least 20% of 96 pathways were

coherent in at least one data subset; 7 pathways were

coherent in normal samples in three data sets, and 14

pathways were coherent in tumor samples in three data sets

(Table 1). A greater number of pathways were also coherent

in tumor than in normal samples in two data sets jointly

evaluated (Table 1). This is consistent with the global
Fig. 3. Coherence indicator vs p value for gene pairs in normal (left) or tumor

coherence indicator tends to have a smaller p value. The horizontal line indicates p

significant.
distribution of coherence indicators (Fig. 2D). In addition,

11 pathways were coherent only in tumor samples, but no

pathways were coherent only in normal samples (Table 2).

Eight pathways were coherent in normal and tumor samples

in two data sets jointly evaluated and 5 pathways were

coherent in both normal and tumor samples in all three data

sets (Table 2). Tumor cells may have more coherent path-

ways because they have a higher rate of metabolism than

normal cells.

A schematic diagram used to display significantly cor-

related gene pairs in pyrimidine biosynthesis is shown in

Fig. 4.
Discussion

This paper presents a computational approach to analyz-

ing coherence of gene expression in pathways using micro-

array gene expression data. Coherence indicators were
(right) samples from CNCR (top) and SMD (bottom) data sets. A higher

= 0.05. Coherence indicators with p values below this line were considered
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Table 2

Coherence in normal and tumor samples

Coherence Data set Pathway description

In tumor only I2000.CNCR Fructose and mannose

metabolism

I2000.CNCR Sterol biosynthesis

I2000.CNCR Urea cycle and metabolism

of amino groups

I2000.CNCR Pyrimidine metabolism

I2000.CNCR Arginine and proline metabolism

I2000.SMD Glycoprotein degradation

CNCR.SMD Ubiquinone biosynthesis

CNCR.SMD Inositol phosphate metabolism

CNCR.SMD Sphingoglycolipid metabolism

CNCR.SMD Nicotinate and nicotinamide

metabolism

I2000.CNCR.SMD Apoptosis

In normal only (None)

In both tumor I2000.CNCR Starch and sucrose metabolism

and normal I2000.SMD Valine, leucine, and isoleucine

degradation

I2000.SMD Lysine biosynthesis

I2000.SMD Propanoate metabolism

I2000.SMD Butanoate metabolism

I2000.SMD Protein export

CNCR.SMD Photosynthesis

CNCR.SMD Aminoacyl-tRNA biosynthesis

I2000.CNCR.SMD Oxidative phosphorylation

I2000.CNCR.SMD ATP synthesis

I2000.CNCR.SMD Ribosome

I2000.CNCR.SMD Transcription factors

I2000.CNCR.SMD Proteasome

Distribution and description of pathways that were coherent in two or more

data sets in tumor and normal samples.

Table 1

Summary of coherent pathways

Data set Type Number of

significant pathways

I2000 N 41

I2000 T 53

CNCR N 21

CNCR T 29

SMD N 20

SMD T 26

CNCR.SMD N 8

CNCR.SMD T 15

I2000.CNCR N 10

I2000.CNCR T 24

I2000.SMD N 13

I2000.SMD T 23

I2000.CNCR.SMD N 7

I2000.CNCR.SMD T 14

Data sets are indicated by I2000, CNCR, or SMD. N, normal; T, tumor

sample.
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estimated in 96 pathways in tumor and normal samples in

three microarray data sets. Our initial motivation of this

study was to test the hypothesis that genes in the same

pathway are more likely to be coordinately regulated than a

randomly selected gene set. Our analysis of the distribution

of coherence indicators, the ratio of significant correlations

among gene pairs in a pathway, clearly supports our

hypothesis (Fig. 2A). Thus, coherence indicator is a reliable

index for a set of genes sharing a common biological

function. In addition, we find that there are more coherent

pathways in tumor than in normal samples, including path-

ways involved in metabolic processes such as synthesis of

ATP, protein, and RNA (Fig. 2C, Tables 1 and 2). The

increase in the mean coherence indicator in tumor was also

observed in the random gene set (Fig. 2D). Upon reexami-

nation of data and analysis, we found that variances in gene

expression across samples were smaller in normal than in

tumor samples, which were largely caused by low expres-

sion of some KEGG genes in normal samples. As explained

under Methods, computation of the Pearson coefficient

depends on nonzero variance for both genes in the gene

pair. This may account for higher mean coherence indicator

in tumor than in normal samples. This also explains why the

mean coherence indicators were similar between pathway

and random gene sets in tumors (Fig. 2B), because the

coherence indicators were higher in both pathway and

random gene sets in tumors. This is consistent with the fact

that tumor cells have a higher rate of metabolism than

normal cells. Five pathways were coherent in normal and

tumor samples in all three data sets. These pathways include

oxidative phosphorylation, ribosomes, and transcription

factors, indicating that coherence of these pathways is

required for all cells. These experiments demonstrate that

biological information can be extracted from microarray

data sets using computational analysis and this information

can enhance our understanding of important biological

processes.
Methods

Gene expression data

The following microarray data sets were analyzed: two

Affymetrix oligonucleotide array data sets [10,11] named

I2000 and CNCR and one cDNA microarray data set named

SMD [12]. There are 22 pairs of colon cancer and matched

normal samples in I2000 and 18 pairs of colon cancer and

matched normal samples in CNCR. The SMD data set has

180 samples, including 74 pairs of liver cancer and matched

normal samples. Each data set was divided into normal and

tumor subsets.

I2000 has expression data for 2000 genes selected in

[10]. Expression intensity was calculated from the mean of

PM–MM intensities.

CNCR has expression data for 7464 genes. Gene expres-

sion level for each probe set is the average intensity

difference between the PM–MM probe pairs. Following

the procedure described in [11], gene expression levels less

than 10 were adjusted to 10 in data preprocessing.

SMD has expression data for 42,675 genes, each of

which is identified by an accession number. Ninety percent

of them can be mapped to Locuslink. Forty-seven percent

of the records had missing values in more than 99% of



Fig. 4. Diagram of significantly correlated gene pairs in pyrimidine metabolism. Pyrimidine pathway diagram is from http://www.genome.ad.jp/kegg/.

Correlation coefficients for gene pairs shown in this pathway were estimated from the CNCR data set. Significantly correlated pairs of genes are connected with

a red or blue line if positively or negatively correlated, respectively. Only correlations (red and blue lines) estimated from the tumor samples are shown. Orange

lines connect gene pairs with significant positive correlation in both tumor and normal samples in the CNCR data set.

H.H. Yang et al. / Genomics 84 (2004) 211–217216
samples and were not included in the analysis. The remain-

ing data set included 22,618 genes. As recommended in

Ref. [12], statistics of channel measurement were used to

define gene expression according to the following proce-

dure: CH1I and CH2I were defined as the mean intensities in

the signal channel and reference channel, respectively, and

CH1B and CH2B were defined as the medians of the

background in the signal and reference channels, respec-

tively. Gene expression was defined as the ratio (CH1I �
CH1B)/(CH2I � CH2B), if both (CH1I > 1.5 CH1B) and

(CH2I > 1.5 CH2B) were true.

Genes selected for analysis belong to pathways defined

in the KEGG database (http://www.genome.ad.jp/kegg/).

The KEGG database has annotated information on 103

pathways and 1378 genes. The three data sets I2000,

CNCR, and SMD contain 330, 809, and 907 genes, respec-

tively, that are present in KEGG pathways.

Coherence indicator

To compute the coherence indicator of a pathway, we

identified a pair of genes that satisfy the following two

criteria: both genes are included in at least one data set and
both genes belong to the same pathway. If the number of the

genes in a pathway is n, the number of gene pairs is n(n �
1)/2. Given a normal or tumor data set of m samples, for

each pair of genes in the pathway we evaluated the corre-

lation and its significance in the following steps. In addition

to the computation of correlation coefficient and the eval-

uation of its significance, several conditions were checked

in this process. Let x = (x1, . . ., xm) and y = ( y1, . . ., ym) be
two sets of gene expression data. Vectors x and y may

contain missing values. We first found the effective sample

size for x and y that is the number of samples in which xi and

yi are both present. We then estimated the correlation

coefficient for x and y if

(1) the variance Var(x) and the variance Var(y) are both

greater than 10�10 and

(2) the effective sample size is greater than 2.

If the effective sample size is m, the correlation cannot

be tested when m < 3 because the number of degrees of

freedom (m � 2) must be greater than zero to compute the

p value of the correlation. Correlation coefficients with p

values <0.05 were considered significant. Gene pairs
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whose accession number mapped to the same Locuslink

ID were excluded from analysis. We had six subsets of

data, normal and tumor subsets of the three data sets. We

conducted the above correlation analysis 4,751,952 times

for all combinations of data sets and pathways. This is a

computationally intensive and time-consuming process.

The correlation coefficient results were saved for comput-

ing coherence indicators of pathways and random gene

sets.

The significance of coherence indicators was tested as

follows. Let GK(D) denote the reference gene set. For a

given data set and a pathway, we had n genes. We first

calculated N = n � (n � 1)/2 gene pairs in the pathway. We

then computed the coherence indicator r0 that was the

estimate of the true ratio r of significantly correlated gene

pairs in the pathway. The 95% confidence interval for the

true ratio r was

½r0 � 1:96� s=sqrtðNÞ; r0 þ 1:96� s=sqrtðNÞ�;

where s = sqrt(r � (1 � r)). However, this confidence

interval was not useful because the ratio r was unknown.

Since the ratio r was between 0 and 1, the upper bound of s

was 0.5. Replacing s by 0.5, we obtained a wider confidence

interval,

½r0 � 0:98=sqrtðNÞ; r0 þ 0:98=sqrtðNÞ�:

To evaluate the significance of the coherence indicator

r0, we randomly selected n genes in the reference set

GK(D) and computed the coherence indicator for this

random gene set based on the same data subset used to

compute r0. We repeated this procedure 1000 times and

obtained 1000 coherence indicators for the random gene

sets. Since the true value of the coherence indicator was

unknown, we defined the p value for r0 as the frequency of

the coherence indicators from random gene sets being

greater than the left end of the confidence interval (r0 �
0.98/sqrt(N)). The left end of the confidence interval

imposed more stringent selection of the significant coherent

pathways. The fewer the coherence indicators of the

random gene sets that were greater than the left end of

the confidence interval, the more significant the coherence

indicator r0 became.

We have provided an Splus package to demonstrate our

approach. The package contains a demo, more than 20 Splus

functions, and some data files. It can be down loaded from

ftp://ftp1.nci.nih.gov/pub/LeeLab/pathway.
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